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The convergence of a sequence of positive linear operators to the identity
operator was studied deeply by Korovkin [5]. His main theorem was put
in an inequality form by Shisha and Mond [9], measuring the degree of
this convergence. Later other authors gave similar, more general/flexible,
quantitative results, e.g., Mond [7].

By Riesz representation theorem, the above convergence is closely
related to the weak convergence of a sequence of finite measures, to the
unit (Dirac) measure at a fixed point.

Introducing a new variation of the K-functional and using the ter
minology of moments (see [3,4]), for convenience we consider only
probability measures, and we establish a sharp inequality which estimates
the degree of the pointwise convergence of a sequence of positive linear
operators to the identity operator, all acting on C( [a, b]), where
[a, b] c R

DEFINITION 1. Let IE C( [a, b]). Let n E N and x 0 E [a, b] be fixed. We
define the reduced K-functional as

K:;'o)(f, t) = inf( III - gil + t II g(I1)II)·

Here, t ~ 0 while g ranges through the functions g E C( [a, b]) satisfying
g(k)(XO) = 0; k = 1,..., n - 1 where 11'11 denotes the sup-norm.

It is similar to a functional K I1 (f, t) employed by Peetre [8], where one
does not impose the conditions g(k)(XO) = O.

The quantity K:;<oJ measures how well I can be approximated by a
smooth function g. It is the right so:t of measure for the approximation of
small functions I possessing large derivatives in sup-norm.

* This note is part of the author's doctoral dissertation written under the supervision of
Professor 1. H. B. Kemperman at the University of Rochester, Rochester, N. Y.
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Remark 2. The reduced K-functional has the following properties.
Namely, it is:

(i) Subadditive in terms of f
(ii) Continuous, nonnegative, monotonely increasing, and concave

in t (and hence subadditive).

(iii) K);'o)(f, 0) = O.

That is, it has the basic properties of the usual Peetre functional Kn(f, t).
When n = 1, then K\xo) = K j • Obviously

Kn(f, t) ~ K~;'o)(f, t)

with equality when f is a constant function.
Now we give the main result of this note:

THEOREM 3. Let Jl be a probability measure on [a, bJ with prescribed
absolute moment

(3.1 )

where Xo is a fixed point of [a, b]. Consider f E C( [a, bJ).
Then

If f dJl- f(xo)1 ~ 2Kl;'o) (f; d\(Xo)(;~~o))"-I). (3.2)

where c(xo)= max(xo- a, b - xo), n EN.
The above inequality is attained (i.e., it is sharp) by the function

f(x) = (x - xo)" and the probability measure Jlo carried by {xo, a} if
X o- a ~ b -Xo, as well as by {xo, b} if Xo- a ~ b - xo: in each case having
mass [1- (d\(xo)/c(xo))] and d\(xo)/c(xo), respectively.

Proof For f E C( [a, bJ) and g E C"( [a, b]) we have f( y) - f(xo) =
(f( y) - g( y)) + (g( y) - g(xo)) + (g(xo) - f(xo))· Integrating relative to Jl
obtain

If f dJl- f(xo)1 ~ If (f(y) - g(y)) Jl(dY )! + Ig(xo) - f(xo)1

+ If (g(y) - g(xo)} Jl(dY )!

~ 2 Ilf - gil +f Ig(y) - g(xo)1 Jl(dy),

where II . 1/ denotes the supremum norm.
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Now assume that g(k)(XO ) = 0, k = 1, ... , n - 1. By Taylor's theorem we
have yE(Xo, y):

Thus

Ilg(II)11
I Ig(y)- g(xo)1 P(dy)~-,-I ly-xol" p(dy).

n.

Letting dll(xo)=(S Iy-xoj" p(dy»'/II we then have

I I
Ilg(II)11

Ifdp-f(xo) ~ 2 lif - gil +-n!- d;;(xo)·

Now by applying Definition 1 we conclude:

II
fdP- f(x )1 ~2K«o) (r d;:(Xo))

. .' 0 "" II .' 2n! .

Since clearly d;;(xo)~ d,(xo)(c(xo))"- I we have proved (3.2).
Furthermore, consider f(x) = (x - XO)", which satisfies f(i)(xo) = 0;

i = 1, ... , n - I. Then, integrating relative to the probability measure Po
described in the theorem, one easily verifies the last assertion. Note that
(taking g=fin the definition of K~;«Jl) K~;,o)(f, t) ~ t Ilf(II)11 = tn!' I

COROLLARY 4. We get the attainable inequality

(4.1 )

(where K, is the usual K-functional).

Using the terminology of positive linear operators one obtains

COROLLARY 5 (Pointwise Approximation). Let fE C([a, b]) and let L
be a positive linear operator acting on C( [a, b]) satisfying

L(1, x) = 1 all XE [a, b].

Then, we have the attainable (i.e., sharp) inequality

IL(j, x) - f(x)1 ~ 2K1(f; ~L(I y - xl, xl),

all x E [a, b ].

(5.1 )
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XE [0, 1J, NE N.

Proof By Riesz representation theorem there exists a probability
measure J.1x such that L(1. x) =Jj( t) J.1A dt). And then (5.1) is just another
of writing (3.2) with n = 1. I

As an application of the last we give:

EXAMPLE 6. Let j E C( [0, 1J) and consider the Bernstein polynomials
(see [6J):

(BNf)(x) = kto j(~)(~)xk(l-X)N~\

Then by applying (5.1) and using Schwarz's inequality to estimate the
argument in the K-functional, we obtain

( 1JX(l-X)) ( 1)I(BNj)(x)- j(x)\ ~2KI j;2 N ~2Kl j; 4ft .
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