JOURNAL OF APPROXIMATION THEORY 44, 380-383 (1985)

A "K-Attainable" Inequality Related to the Convergence of Positive Linear Operators*

GEORGE A. ANASTASSIOU

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881-0816, U.S.A

Communicated by Oved Shisha

Received June 14, 1984

The convergence of a sequence of positive linear operators to the identity operator was studied deeply by Korovkin [5]. His main theorem was put in an inequality form by Shisha and Mond [9], measuring the degree of this convergence. Later other authors gave similar, more general/flexible, quantitative results, e.g., Mond [7].

By Riesz representation theorem, the above convergence is closely related to the weak convergence of a sequence of finite measures, to the unit (Dirac) measure at a fixed point.

Introducing a new variation of the K-functional and using the terminology of moments (see [3, 4]), for convenience we consider only probability measures, and we establish a sharp inequality which estimates the degree of the pointwise convergence of a sequence of positive linear operators to the identity operator, all acting on C([a, b]), where $[a, b] \subset \mathbb{R}$.

DEFINITION 1. Let $f \in C([a, b])$. Let $n \in \mathbb{N}$ and $x_0 \in [a, b]$ be fixed. We define the *reduced K-functional* as

$$K_n^{(x_0)}(f, t) = \inf(\|f - g\| + t \|g^{(n)}\|).$$

Here, $t \ge 0$ while g ranges through the functions $g \in C^n([a, b])$ satisfying $g^{(k)}(x_0) = 0$; k = 1, ..., n-1 where $\|\cdot\|$ denotes the sup-norm.

It is similar to a functional $K_n(f, t)$ employed by Peetre [8], where one does not impose the conditions $g^{(k)}(x_0) = 0$.

The quantity $K_n^{(x_0)}$ measures how well f can be approximated by a smooth function g. It is the right sort of measure for the approximation of small functions f possessing large derivatives in sup-norm.

* This note is part of the author's doctoral dissertation written under the supervision of Professor J. H. B. Kemperman at the University of Rochester, Rochester, N. Y.

Remark 2. The reduced K-functional has the following properties. Namely, it is:

(i) Subadditive in terms of f.

(ii) Continuous, nonnegative, monotonely increasing, and concave in t (and hence subadditive).

(iii) $K_n^{(x_0)}(f, 0) = 0.$

That is, it has the basic properties of the usual Peetre functional $K_n(f, t)$. When n = 1, then $K_1^{(x_0)} = K_1$. Obviously

$$K_n(f,t) \leq K_n^{(x_0)}(f,t)$$

with equality when f is a constant function.

Now we give the main result of this note:

THEOREM 3. Let μ be a probability measure on [a, b] with prescribed absolute moment

$$d_1(x_0) = \int |y - x_0| \ \mu(dy), \tag{3.1}$$

where x_0 is a fixed point of [a, b]. Consider $f \in C([a, b])$.

Then

$$\left| \int f \, d\mu - f(x_0) \right| \leq 2K_n^{(x_0)} \left(f; \frac{d_1(x_0)(c(x_0))^{n-1}}{2n!} \right), \tag{3.2}$$

where $c(x_0) = \max(x_0 - a, b - x_0), n \in \mathbb{N}$.

The above inequality is attained (i.e., it is sharp) by the function $f(x) = (x - x_0)^n$ and the probability measure μ_0 carried by $\{x_0, a\}$ if $x_0 - a \ge b - x_0$, as well as by $\{x_0, b\}$ if $x_0 - a \le b - x_0$: in each case having mass $[1 - (d_1(x_0)/c(x_0))]$ and $d_1(x_0)/c(x_0)$, respectively.

Proof. For $f \in C([a, b])$ and $g \in C^n([a, b])$ we have $f(y) - f(x_0) = (f(y) - g(y)) + (g(y) - g(x_0)) + (g(x_0) - f(x_0))$. Integrating relative to μ obtain

$$\begin{split} \left| \int f \, d\mu - f(x_0) \right| &\leq \left| \int \left(f(y) - g(y) \right) \mu(dy) \right| + |g(x_0) - f(x_0)| \\ &+ \left| \int \left(g(y) - g(x_0) \right) \mu(dy) \right| \\ &\leq 2 \| f - g\| + \int |g(y) - g(x_0)| \, \mu(dy), \end{split}$$

where $\|\cdot\|$ denotes the supremum norm.

Now assume that $g^{(k)}(x_0) = 0$, k = 1,..., n-1. By Taylor's theorem we have $\gamma \in (x_0, y)$:

$$|g(y) - g(x_0)| = \left|\frac{g^{(n)}(\gamma)}{n!} (y - x_0)^n\right| \leq \frac{||g^{(n)}||}{n!} |y - x_0|^n.$$

Thus

$$\int |g(y) - g(x_0)| \ \mu(dy) \leq \frac{\|g^{(n)}\|}{n!} \int |y - x_0|^n \ \mu(dy).$$

Letting $d_n(x_0) = (\int |y - x_0|^n \mu(dy))^{1/n}$ we then have

$$\left| \int f \, d\mu - f(x_0) \right| \leq 2 \, \|f - g\| + \frac{\|g^{(n)}\|}{n!} \, d_n^n(x_0).$$

Now by applying Definition 1 we conclude:

$$\left|\int f\,d\mu - f(x_0)\right| \leq 2K_n^{(x_0)}\left(f;\frac{d_n^n(x_0)}{2n!}\right).$$

Since clearly $d_n^n(x_0) \leq d_1(x_0)(c(x_0))^{n-1}$ we have proved (3.2).

Furthermore, consider $f(x) = (x - x_0)^n$, which satisfies $f^{(i)}(x_0) = 0$; i = 1, ..., n - 1. Then, integrating relative to the probability measure μ_0 described in the theorem, one easily verifies the last assertion. Note that (taking g = f in the definition of $K_n^{(x_0)}$) $K_n^{(x_0)}(f, t) \le t ||f^{(n)}|| = tn!$.

COROLLARY 4. We get the attainable inequality

$$\left| \int f \, d\mu - f(x_0) \right| \leq 2K_1 \left(f; \frac{d_1(x_0)}{2} \right) \tag{4.1}$$

(where K_1 is the usual K-functional).

Using the terminology of positive linear operators one obtains

COROLLARY 5 (Pointwise Approximation). Let $f \in C([a, b])$ and let L be a positive linear operator acting on C([a, b]) satisfying

$$L(1, x) = 1 \qquad \text{all} \quad x \in [a, b].$$

Then, we have the attainable (i.e., sharp) inequality

$$|L(f, x) - f(x)| \le 2K_1(f; \frac{1}{2}L(|y - x|, x)),$$
(5.1)

all $x \in [a, b]$.

Proof. By Riesz representation theorem there exists a probability measure μ_x such that $L(f, x) = \int f(t) \mu_x(dt)$. And then (5.1) is just another of writing (3.2) with n = 1.

As an application of the last we give:

EXAMPLE 6. Let $f \in C([0, 1])$ and consider the Bernstein polynomials (see [6]):

$$(B_N f)(x) = \sum_{k=0}^N f\left(\frac{k}{N}\right) \binom{N}{k} x^k (1-x)^{N-k}, \qquad x \in [0, 1], \ N \in \mathbb{N}.$$

Then by applying (5.1) and using Schwarz's inequality to estimate the argument in the K-functional, we obtain

$$|(B_N f)(x) - f(x)| \leq 2K_1 \left(f; \frac{1}{2}\sqrt{\frac{x(1-x)}{N}}\right) \leq 2K_1 \left(f; \frac{1}{4\sqrt{N}}\right).$$

References

- 1. P. L. BUTZER AND H. BERENS, "Semi-Groups of Operators and Approximation," Springer-Verlag, Berlin/New York, 1967.
- 2. H. JOHNEN, Inequalities connected with the moduli of smoothness. Mat. Vestnik 24 (1972), 289-303.
- 3. J. H. B. KEMPERMAN, The general moment problem, a geometric approach, Ann. Math. Statist. 39 (1) (1968), 93-122.
- 4. J. H. B. KEMPERMAN, On the role of duality in the theory of moments, *in* "Semi-Infinite Progr. and Appl.: An International Symposium at Austin, Texas, 1981," Lecture Notes in Economics and Math. Systems No. 215, pp. 63–92, Springer-Verlag, Berlin/New York, 1983.
- 5. P. P. KOROVKIN, "Linear Operators and Approximation Theory," Hindustan Publ. Corp., Delhi, India, 1960.
- 6. G. G. LORENTZ, "Bernstein Polynomials," Univ. of Toronto Press, Toronto, 1953.
- 7. B. MOND, On the degree of approximation by linear positive operators, J. Approx. Theory 18 (1976), 304-306.
- 8. J. PEETRE, "A Theory of Interpolation of Normed Spaces," Notes Universidade de Brasilia, 1963.
- 9. O. SHISHA AND B. MOND, The degree of convergence of sequences of linear positive operators, *Nat. Acad. Sci. U.S.* **60** (1968), 1196–1200.